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é?stract

By means of a systematic apnproximation based on the
perturbation theory, from t..e three-dimensional, non-
linear elasticity theory, tive partial differential
equations are obtained for the non-linear oscillations of
visco-elastic olates. The onlate can undergo a finite trans-
verse deflection. The rotatory inertia, shear deformation and
effect of body force and moment comoonents are taken intc
account. The vresent theory is the generalization of FdOppl-
K&rnidn-Timoshenko theory of large static defiacticn on the
one hand and Uflyand-Mindlin theory of smaii c¢scillation
theory on the other hand.

Boundary and initial conditions are discussed and an

expression for the strain energy is given.

1. Introduction

Foppl obtained two simultaneous non-linear partial
differential eguations to study the large static deflectioa
of plates [1l]}. Von Kdrmdn and 5. Timosiienkc reformulated and
studied these equations for various plate oroblems. Many
other authors used these equations, now known as F8pol-Kirmén-
Timoshenkxo theory., Assum»tions ot this thenrv 3re not
systematic and thus it 1is desirarcle to know whether there are
other terms micsing from these equations which are of the
same order of magnitude with the »resent cnes., Alsc tor
cynamic problems the incrtia teras wust e taken rniou dccount,

Tre effect of shear cdeformation i1n static plate »nroblems



was first considered by L. Reissner [2]. Uflyand [3] and
Mindlin (4] have reformulated small oscillaticui problems of
piates and took into account the effect of rotatory inertia
and shear deformation.

Recently for the genaral formulation of shell problems,
many papers nave appeared, most of which are in tensor
notation or written in intrinsic coordinates which do not

lend themselves easily to application [S, 6, 7].

The highly rigorous neture of these papers leads to very
high complexity, thus making the solution of even very simple
problems prohibitive or impossible. The use of the highly
productive method of engineers, the intuition, is therevy
hindered.

In impact problems, where the transient stage is important,
a further complication must be included into the formulation,
ramely the internal damping effect,

With these views in mind, the reformulation of the plate
theory is made. Consequently, the present theory includes the
effects of: (a) finite transverse deflection, (b) shear
deformation, (c) rotatory inertia, (d) internal damping,

(e) body force and moments. Tne theory is based on the following
assumptions:

l. The formation components are expandable into pcwer
series of non-dimensional transverse coordinates [ tinmes
small perturbation parameter e which is choser. as the ncn-

dimensional thickness of the plate (see equation (3) below),

L
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2. Hooke’s law is valid between stress and stiain
components,

3. The coefficient of shear viscosity, at the median
plane, is a constant multiple of the coefficient of normal
viscosity at the same plane.

The first assumption is similar to Goodier’s [8]
assumption in treating oroblems of beam and nlate. He
assumes that the components of the stress tensor are developable
into power series of non-dimensional thickness parameter e.

In treating the finite deformation problems, this method
becomes very complicated and cumbersome. It seems that the
same purpose cdn be accomplished directly by dealing with the
defcrmation components. We thus start from a poirt at which
he ends up. The advantage of this orocedure is that it avoids
integration of some systems of differential equations which
may be quite complicated in a finite deformation thecry.
Difficulty arises however in obtaining desirable orders of
magnitude rfor transverse stress components for the isotropic
material. While this noint is easily explained for an
orthotropic material, 1t cannot e explained for an iso-
trooic material without considering the higher order terms in
the expressions of thne deformation comoonents., JSucn an effort
se2ms to pbe hardly wortii {lic L:lubie.

ine second assumption is controversial but a commonly
used one.

The last assumption need not be included into the theory.
The whole tiueory can be carriea out without using this assump-

ticrn. However, unnzcessary comolications are avolded by usiny 1it.
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The present theory ends after obtaining differential
equations of the lowest order pertinent functions in the
expansion of deformation components.

Five oartial differential equaiions are obtained whose
solution is believed to exnlain the behavior of finite
oscillations of visco-elastic »olates to a reasonable degree
of annroximation. These equations are non-linear, and contain
ail orevious technical plate theories as special cases,

Boundary and initial conditions are discussed. It is
found that five conditions are needead for every vart of the
edge surface which has continucus normals nossessing first
crder continuous derivatives,

Finally, «n expressicn for the strain energy is given
which coisists of two parts, namely: Elastic energy and

Energy of dissipatien.

2. Comoonents of Strain Tensor

Let xl, x2, x° or invariably x, y, z be the rectangular

cartesian coordinates of a noint of the nlate before de-
formation. We select the (xl, xz)-plane as the median »lane

of tnhe olate and x3 as the direction verrendicular to this

nlane, so that xl, xz, x3 m2kes a right-handed coordinate system.
The planes x3 = + h/2 will pbe taken as the upper and lower

faces of the »late. Comnorents of the deformation vecter in
rectangular cartesian coordinates will be denoted by ui (o bt

{u, v, w) 2nd ccvariant ccamocnents of the strain tensor by

'y

iy °F (Exx' ...,cxy). The length element ds in the deformed

pody is given by [9]:
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ds® = 9 dxlgx) = (By; + 26,0 dx*dx? (1)
i j k k

zeiJ - duv + dui + d\% duﬁ (i,j — 1‘2'3) (2)
de dx ax* ax?

wheres

1l when 1=j
1)

3., = 8.3 = 3id -{
bR

o when 1%#j

are the Kronecker deltas, and g;; are the covariant components

3
of the metric tensor for the deformed kody.

Throughout the nawer the usual summation conveniion will

be used; namely, repeated irdices denote summation over the
range (1, 2, 3). <VWe note that there is nc need to distinguish

covariant mixed and contravariant com»onents of any tensor in

cartesian coordinates, Hence € . = eiJ = eiJ, ut = u, .

1)
. H‘l 2 .3 g g
We assume that u ,x“,x”,t) can e expanded into opower
series of x°/h = {:

u/a-ez[uo(f,,n,t) + Cul('g,n‘t) + e3C3u3(§,n,t) LT )

v/a=&Lv (4,n,t) + Cv. (4,n,t) + e%cv (gm0 4.1 3 (3)

4,4

w/a-c{wo(g,n,t) * ezczwz(é,n,t) + e w4(§,n,t} ¥own ]

.
where £, n, { are non-dimernsional coordirates, a 1s a tynical
length and e is a small »araueter.

x/a = %Y,v/a=n,z/a=ei,e=hfa,e«l (4)
The explicit forms of the strain com»onernts are obtcined by

substituting equations (3) intc equations (2). Hence:
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_ 2 1 2 . o4 \
€xx = @ [uo,§ T Yo,y C“l,g] * Ole’)

o2 1 2 4
— [vo.ﬂ T Cvl,n] + C(e”)
€0 = ez[é(ulz + vlz) + 2Gw,] ¢+ o(e?)

12 0l ()
xy™ 22 (0,0 * Yo,8 * Yo,g¥o,n * Gy oty )] Ol
ey = olvy * g )+ Oed)
I % e(ul + oW, g) +0(ed) J

where indices after a comaa represent differentiation,i.e.

u, £ = du°/6§ etc. In equation (5) the second order terms

represent the effect of large daformations which would be en-
countered in a second order theory. The second oruer terms
occuring in the exoressions of € x? eyy, and exy are identical
to those of F&ppl-Kdrmdn-Timoshenko theory of large static
deflection. The classical nlate theory assumes u) = Wy X

14

= = - 3 -~
vy w , hence (Syz' sz) C(e”). Consequently the

o.M

transverse shear strains ¢ € as well as €,,¢ are taken

yz' “zx’

as zero. The present thccry will not ignore these strain

components.

A
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3. OStress-Strain Relations for an tlastic Medium with Internal

Damgi g

The literature contains various attempts to generalize
the classical stress-strain law of elasticity so as to include

the effect of internal damping. LEarly discoveries are due to

O. Mever [10], W. Voigt [11] and K. Sezawa [12] which can, in

the modern notation, be exrressed as:

oy = v fp @8+ (avm ey

. ‘ (6)
g = 51dg, = gl

ij i

where N and p are thc classical Lamé constants and A’ and p’
are the normal and shear solid viscosities. Here °ij are

the mixed com-sonents of the stress tensor which are retferred
i

to the curvilinear coordinates y= of the deformed state,

while strain components are referred to the cartesian coordinates

xi of the undeformed state.

2 are perpendicular to each othar and

3

Coordinates yl and y
lie in the tangent plane of the median plane and y° is per-
pendicular to this plane and makes a right hand system with
yl and yz.

The controversial assumption underlying equations (6)
seems to be as good as any one in use relating stress components
to strain components.

Coefficients N\, p, are related to Young’s modulus E,

Shear modulus G and Poisson’s ratio v by the following




relations:

N = vE/(1-2v)(lew) , u=0G (7)

In a simiiar manner E’, G’ and v can be defined by:
AN = vE’/(1-2v) (1+v) , pu’' =G’ (8)

Consequently, if one defines:

k"k*k’adf . g_’u*u'agg
(9)

E=E+ E'-3 G=6+ G-I

= it = a9t
equations (6) take the same form as those of the classical
elasticity theory, which further leads to a considerable
simplification.

We note that the strain components in equations (6)
are exoressed in cartecsian coordinates. Hence covariant,
contravariant and mixed comnonents of stress tensor need not
be distinguished for the present approximation.

When a Voigt solid is subject to oscillating stressss, the
rate cf dissipation of energy is proportional to the sguare of
the freguency of oscillation, as may be observed from
equation (6) for the one-dimersional case. Lord Kelvin [13]
has observed that the rate of dissipation of energy increases
less rapidly than the square of the frequency. This led to
the gerieralization of Poynting and Thomson [14] and more
recently to that of Alfrey [1l5, 16], which contains all other

. . ) +
thecries given before as a s»necial case.( ) Alfrey’s stress-

) L. Boltzmann uses the superposition principle which
seems to ke less suitable for the -uroose of gz2neralization.
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strain relations for an incompnressible material are expressed

in the following form:

= = l

Poj, =P o8, + 26, , o=3(0 + 0y *og)

€44 = €1 * €99 * €53 =0 } (10)
m i n i
f=o 1 3t im0 1 gt J

where conatants ay and bi are to be determined from the
experiment.
We now generalize this equation further to include normal

viscosities in the case of comnressible material, and write:

Paik = RGSik + 2Qeik ]
11
R % di e [4 + + J Y
= c ,0=¢, = € €
N B o 14 = %13 “€93 TE3s

Here P and Q are the same as in equation (10). We now solve

Ok from differential equation (11) by using nperational
methods.

Let F(8) be the Lavlace transform of F(t) as defined by:
Fs) = £ o ®'r(t)at (12)

Applying the Laplace transform to the expression of Poik in
equatior (11) (i.e. by taking Poy, for F(t) in eguation {12)),

we cbtain

i aik = L(s) O (xl, Xy, Xg, s) 81j +2M(s)

Eij(xl‘ Xy, Xg, 8) + ﬁ(xl, Xy, Xg, 5) (13)
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where:

= e 4T PR 2PN P R PRGN
o
r

_ m - n nm ;
L(s) = ( % cisi)/( X aisi). M(s) = (L bisiﬂ(t a,s”)

=5 =0 imo jmo 4
(14
Ris) = (D 4370 % a,sb) D, ( )
s) = L D.s L a s , D, = Xy ,Xo,X
Sy e i i (X1 .X9,%g

Taking the inverse transform of equation (13) we obtain

- t -
95 Sirro Lo(t T). e(xl,xz,xs,r)dx

t
+ Zfo M, (t-7) eij(xl,xz,xa,r)dx + No(xl,xz,xa,t) (15)
If the system has no initial stress then oij must vanish with

eij' thus giving No-! O. Furthermore, writing the elastic

parte separately in equation (15) we have:
o055 = xeﬁij + zueij + Bij'g L(t-<) e(xl,xz,xa,r)dr

*2,€t M(t-r)sij(xl,xz,xa,r)dr (18
where:

| L(t) = L (t) -x M(t) = M_(t) = (17

Thus, we arrived at V. Volterra’s [17] stress-strain
relation for a medium having heredity. Consequently, the

general internal damving law stated by equation (11) is identical

to hereditary damping which is fr>quently treated as a different
and rather more general nhenomencn. Equation (16) is, of
; course, identical to those used by E. Volterra [16] for an

i elastic medium with hereditary damping.

e N
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A useful form of the stress-strain relations (16) is

obtained if we use the convolution multiplication defined by:
Fa¢ =/ Flt-t)g(t)de (18)

We note that F ® ¢ = ¢ x F. Equation (16) can now be

written siaply:

, = .+ :
whe.e the operators A and g4 are defined by:
»* *

-\ + LE = + M* 20)
X e ‘

Equation (19) has exactly the same form of elastic stress-
strain relations for a hcmogeneous, isotropic media. There-
fora, substitutisn of h_ and.g. for A and p of classical
elasticity theory in all equations of elasto-dynamics, gives
the corresponding equations for a medium with internal damping.
Attention must be given to the fact, however, that }& and ‘i-
have time derivatives,

A more compact relation would be obtained if we

eliminated 6 in equation (19)., Writing i = j we obtain:

o=+ $ple (21)
Subtracting hydrostatic osressure oSij from equation {19),
we obtain:

8. . -Zg_ ey (22)

. vk
et ok
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where aij and ‘ij are the deviatric parts of the stress and

strain tensors and are defined by:

e
8y = 944 " oSij, 05 = €54 " 3'81j (23)

It is important to note that the functions L and M of the stress-

strain relations (16) may be discontinuous functions. Howeve:,

the convolution integrals are continuous and have continuous

derivetives with respect to time. In fact, we can obtain a
general expression for L{t) and M(t) by getting the inverse
transforms of T and . In the most general case we may have
m¢d, m{n, which corresponds to the case in which the highest
order derivative occuring in equation (11) is that of CIpwe For
example, the Voight-Sezawa type of damping is of this sort. 1In
this case, by use of tha Dirac-Delta function and its derivatives,
we can obtain corresponding A and p. If F(t) i< a continuous

= *

function with continuous derivative, and F(O) = O, integratiﬁg
by parts we see that (=):

CRFARNCU IR UL R (24)
where the Dirac-Delta function 5(t) is defined by:
@ fort=20
d(t) -{ and S'® d(t)dt = 1 (25)
0 for t ¢ 0 -

Hence, equation (6) is identical to squation (19) with:

) L W k'g(t)ﬂ- : B=p* u'é(t)i- (26)
» i *

If the difference between the highest order derivatives of oij

T!'TSQ:r:i.c‘tly speaking, this equation is true only in a limiting

sense: OJF/dt = lim 'gt+e 5(t-r,e)f(r)dr where 1lim O8(t,e) = &(t).
e-»0 €e+»0
See also L. Schwartz [19], vol. II. p. 17.
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and €53 occuring in equaticn (1l1) is k, then L and M will

th

contain kP derivative of the delta-function''). We <an, in

fact, determine and discuss all nossiile forms of A and g by
£ W

discussing the roots of the denoninator of L and M. We shall

not, however, go into this matter here, as this would be of no

interest in application for we do not know coefficients a b

il
and Cy e We shall be satisfied, then, by remarking that the

i

commonly used expressions of L(t) and M(t) are cf the following

m -
exponential type [18]): I Aje ait. It is easily seen that
i=o

this is included in the inversion o. L and M. In fact, if the

denominator of L and M has m real distinct root and (f,n)¢ m we
obtain an exoression »f this sort. Various attempts have been

made to determine Ai and ay in this exoression [20].

It may be of further interest to note that when a_, bi'
and c, are functions of space cccrdinates (xl, Xo, x3) we
obtain a further generalization of inrternal damping, leading
to L and M of an inhomogeneous nedia which are also functions
of coordinates and tinme.

Equation (19) also suggest that in the case of anisotropic
slastic media we can use extended stress-strain relations, by
simply taking the asterisk, ®#, as a subscript in all elastic
coefficients. In the following develooment this will be

the procedure.

(+)

Mathematical justification of the use of the d-function and
its derivatives may be found in Schwartz‘s book [19].

52 &
ol o

: .L?,;_”";
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4. Plate Stress-Strain Relations

We consider an orthotronic plate having @ cylindrical
symmetry with the axis of cylinder in the direction of the

z-axis. The stress-strain relations can be written in the

usual technical notation as:

o v

- XX _V P - A
€xx E E %y Ez 0227 €xy = IC Oxy }

o v

.-V + - X - l

€yy T %xx -§1 E; %22 Cyz ?G; vz ? (27)
Vg Vo %22 1

€22z " T F %xx T E %y ° E €xz = T0. ‘xz

where E, G, and v are the Young’s modulus, shear modulus,

and Poisson’s ratiq respectively, in any direction on the

x-y plane, Ez and Gz are those for the z-direction. Ve is

the Poisson’s ratio corresponding to the contraction in the
x-direction for a unit eloangation in the z-direction.

Likswise Ve is the Poisson’s ratio renresenting the contraction
in z-direction for a unit elongaticr in the x-direction.

These elastic constants are related to each other by

symmetry relations, since the strain energy must be a

positive definite form. Thus:

vx/Ez = vz/B, G =E/2(1 + v) (28)
To obtain the plate stress-strain relations we now select a

particular tyoe of ortrotropy wiiich is consistent with
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equations (28):

v_ o= ezavz ’ Ez = ezaB = e2

9
. E', G, = elyG = o2 (29)

Here, a and y are positive numbers, and Vs E and G are
independent of e.
We solve components of stress tensor from equation (27)

and use equations (29), hence:

- L , = 4
L :2- (t:xx *\eyy) + 0(e?), Sy 2Gexy + O(e”) W

S > = 202G 5
o:r:r I_—v-z (e +ve__) + O(e?), Uyz 2e“G eyz + O(e“) }
(30)

2,
0 = Too WV (e + ey ) + (1v)e ]+ 0(e),

[
o = Zezs'ezx + O(es) /

We thus find that the ccm»honents of the stress tensor are of

the following orders:

(o

e 2
x+Oyy+Oxy) = 0le?), (

0ygeOpy) = O(e%), 0 = 0leh)  (31)

This result agrees with the physical situation that in a
shear deformable media shear modulus GZ is small, and in a
transverse stress deformable media Ez is small. The plate
stress-strain relaticns (30) can be so adjusted as to include
a soecial ty»oe of .nternal damping by replacing E, G, and
G’ by E, G and G’, which are defined by:

» x *

E=E+ex, G=GC+gn, (' =G +g's (32)

I * *

where E, G, and G’ are the usual elasti: coratants, and star(®
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multiplication is defined b equation (18). We :note here,
however, that in this particular internal damping, N\ is a
3

constant aultiole of g. As a matter of fact:

2v E
n = . = =G 33
L & T S B 1o N o
We shall, however, keep G’ as an independent operator through-
t 3

out the present opaper.

The simplification introduced by equation (33) is not
necessary for the analysis. The whole analysis can be
carried out withcut this assumption. However, for the sake of
simplicity we shall use the assumption contained in eguations

(33). Thus, we have two functional operators g.and gf

tayry charagter-

instead of the three revresenting the hered

2

istics of the medium. We note that many important practical
classes of problems are contained in the present‘type of
interral damping.

In the present study we shall use the stress-strain
relations (19) subject to (33), which are valid for three-
dimensional eiastic media with internal damping. We shall,
then, indicate the terms which should be excluded from the
resulting exvressions, whenever tie foregoing type of
anisotropy is assumed, in order to cobtain the formulas which
would follew if the nlate stress-strain relations were used

to begin with,
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{ 5. Internal Force and oment Com; >nents

In a plate theory, integrals of the stress components,
as well as their moments about the x and y axes, play an
important role., Thus, we define normal force coponents
(Nx'Ny'Nz)' plane shear force component N__, tré:sverse
shear components (QY‘QY)' bending moment components
(Mx,My,Myx), and body force and moment components (Px,

Py,Pz) and (Gx‘Gy'Gz) by the following equations (Fig. 1):

h/2
(Nx,Ny,Nz,ny) n‘[h/z (0, s O yr Opge oxy) dz j
h/2
(Qx' Qy) .'fh/Z (oxz' oyz) dz
_ ph/2
My, My, M) ‘[h/z (0yxr Oyyr Oyy)z d2 $.(34)
Mxy = -Myx , ny = -N__

- /2
%+ PyeP,) J—i/z (Fyo Fy. F,) dz

(aZed) (P

(a%?/12) (6, 6., 6,) =SM2 (F

. " F Fz)z dz

-h/2 x’ "y’

where Fx' PV‘ Pz are the body force components per unit

mass,

Combining equations (S), (19) and (34) wve obtain:
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Q
"

xx = (N /) + (12/n%) cM_ + O(e*)

Q
"

(N, /n) + (12/h%) T o(e?)

92(q + 2pg) + O(e4)

Q
"

Q
"

(N, /h) + (12/h?) O o(ef)

Q
"

@g/n) + 0(e”)

(Q /h) + O(e)

Q
"

where:
20 = [0,,(x,y,h/2,8)- 0, (x,y,~h/2,t)) /6= (u) ,
»% [
+ v + 2w,) + 44w
l,n 2 % 2

2q = [o,,(x,y,h/2,t) +ozz(x,y,-h/2,t)]/e2= 2

1l 2 1 2 1 2
Y Vom? Vo, Y T%,q N 2-(111 =V

2 2
+ B (u,+ v°)
i g ey

[uo,g 2)]

W

} (36)

J

If we eliminate w, and -‘12'-(1112 + vlz) petwean equations (34),

after using equations (19), and (36) we obtain:

2
e 1 2
Ny/h = 1-v 2 i[“o,g’ 7 VYo,¥

2
e 1 2 1 2 v 2
Nylh = T52ilon® To,n ™ Mo, g® T, 1* T o7

2
Nz/h e“qg

2
. _e
ny/h ’ZTFT)§ (uo,n b Vo,¥ * "o,g"o,n’

3¢
Qe/h =4 e’G (ugr w, o)

- 3 ’ \
Q/h =ke’g (v + w, )

1l v 2
=Y (vo,n* '2"0,7)2)]*1? ¢ g

T

e
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and:
2 2
2 _ _ e 2ve
gae Lol 2 I W L )
2 2
2 _ e 2ve ‘
12My/h :z'g (Vl'n + vulvg) + Lov P (38)
2
2 e
12M = +
=M = ey & Mt Ty p

We note that the terms containing p and q in equations (37)
and (38) appear because we used the stress-strain relations
(19), which are given for ithree-dimensional isotropic media.
Instead, if we use the plate stress-strain relations (30), we
find that these terms disappcar from the expressions of Nx’

N , M

: ; - 4
v Yxo and My. since in tthis case 0,0 O(e®]} hence p and g

becoma of order 94 . See alsec [8)., 1In this case, cbvicusly
N, = 0(64), but it must be taken into account, as there is no
lower order term in the expression of Nz/h.

The introduction of a constant # into the expressions of

Q

distribution across the thickness is not constant. It is

- and Qy is due to the fact that transverse shear stress

known ,however, that eyz and €, are even functions of z.
Hence integrations across the thickness introduce such a
constant #. Such a constant was first introduced by
Mindlin [4], and sucessfully replaces R’ of Timoshenko’s
beam theory, [21]and 5/6 of the Reissner’s plate theory [2].

Mindlin has aclso suggested a formula for R in his paper.
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It may be of interest also to note that we reached the
present combination of §.and v in the first terms of equation
(37) and (38) which are identical to those of the classical
theory, not by using two-dimensional stress-strain relations,

but by using the three-dimensional stress-strain relations,

6. Equations of Motion

The equations of motion of an elastic body referred to
the coordinates in the deformed stage, are sufficient to
determine the exact vlate equations of moticn in a large
deflection theory. Integration across the thickness in the
deformed position makes it possiole to introduce membrane
forces and the plate shear-force and bending moment components
systematically. Ir the vresent theory, the plate thickness
is assumed to remain constant throughout the motion.

Equations of motion in curvilinear coordinates are [9]:

otd;, = plal - Fl) (39)
where p is the mass density per unit volume, Fi are the

components of body forces per unit mass and ai

are the
components of the acceleration vector. Indices after the

semicolon, ; , represents covariant differentiation, i.e:

e i 5 i ~ i
afi - 6213 4 /;{ 0% + /;l g% (40)
! 4

Here /;k is the Christoffel symbol of the second kind and

is related to the Christoffel symbol of the first kind f;j .

and the components of the fundamental met.sic tensor glJ and

o
¢
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of the deforred medium by:
k k dg dg. dq. .
[= . =dT -t e —f2 - 2D
it ij ij,a axJ  ax ax

of [ . ¢ are:

1],

2 1 2
[l 7 (e7128) lug g v v o g™ Cup ) g

—

pl

- (2l
g = ) o g 2GR g ¢ Tl

[ = (e/2a)w T = = (e%/2a) (g,

11,3 4234 12,1 21,1 13

1 2
ZV,5 " thg)en

= [ =z tv, ey BT )

r =r = le/2a)w,
13,1 31,1

[ = = (e/2a)v, ., [ = = (e2/2a) (3u.2
YO Rt T S PUP P SRS

v gvle 2Cuy) ¢

-
[

-
N

[ = (e?/2a)(u

22,1 o, ¥ Yo,t¥,mm * “41,nn'

5'2 = (92/2a)(v°m + %.,,omz TR

£;,3 = ‘°/2°)“o,nn . é;'l € g;,l = (e/2a)ul'n .

A MR L W 52'3'5;'3=(82/2a)(%uf!+é~l
*Zsz)'n, é;'z‘{;'3. g;’;‘ég'a. g;'3'(e/a)w2

ne [ = [ = (el2a)uy 4,

2

(41)

(S) and (41) we find that the components

}(42)
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o

The terms of the lowest order in o} | are:

3
Ji o 9ot 25 . g%
0 gxd ) gxd

: 3; (43)
B B - A S e AN o3 o124 r3 522
12

Pl gxd 11 22

Thus, in the present theory, we only need to retain f-3, /—3
11 12

and f'? A nore general theory will undoubtedly contain more
22
of these coefficients. Therefore, equations (42) may be useful

for that nurpose.

Using equations (1), (41) and (42) we find that:

3=+ 0(ed) = (ef2a)w_ .. + O(ed)
11 11,3 °.%¢
[2 =+ o0’ = (ef2a)wy , + 0(e?) (44)
12 12,3 e 57
S . + O(es) = (e/2a)w + O(e3)
22 [;2,3 . J

Components al of the acceleration vector in the cartesian
coordinates x* are given by:

4
i d?u*

4

Hence by equations (3)and (45):

at =a =a eZCJO + C;l) + O(e4)
9 et s 4 (46)

a® = a = ae (v° + Cvl) + Cle’)

a~ =a, =ae ;o & O(e% .

Microsconic equati.ns .7 mct on (3¢) tius beccme:
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do do h
XX Xy Xz _ - )
Ix ° dy * 3z p(ax Fx)

dovx do do .
—Ek-"* _3§X + —3%— = p(ay - Fy) }(47)

dozx dozz . do

<x ' Ty —3%2 E {Iaoxx ! 27‘30 ® [-30 = p(az‘FzU

12 ¥ 22 V¥
Mass density p is given bv

p=p (l-20 + 46, -88)2=p [1-0(e?) (48)
where 6 , 62, 63 are the strain invariants of which © -eii
-0(02) is the lowest order. Hence in the »resent theory

P =0, that is the change in mass density during the de-
formation is negligible., The force and the mcnent equilibrium
of a plate element with thickness h, cut off from the nlate

by draving rormals to the defonrmed median plane, 3
used 5] to redure the microsccpic equilibrium conditions to
macroscopic equilibrium equations. This, of course, represents
an approximation whicn replaces the correct equilbrium condition,
namely, that moments of all order across the thickness

should be zero. Thne foregoing practice, however, only

insures zero moments of the first and zero orders. This

commcn practice is, hcwever, in accord with the present

theory. Hence integrating equations (47) across the thickness,

we obtain:

N dN h/2 h/2
dx Ty [oxz}-h/Z =‘£h/2 pla, - F,)dz (49)
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'
de iﬁl h/2 h/2 : )
—E—X + + (o, - pla, - F )dz
x 7y yz2 h/2 -h/2 y y
dQ aQ h/2 3
Lo i + 3 + 2 + 3
e . LNk A Tk W VR I
-h/2
h/2 )
= (a, - F_ )dz
RYPRE /
Next we multiply equations (47) by z and integrate across the
thickness. Hence:
M aM 3
xR Ho,, (kv h/2,0) ¢ o, (Y, h/ 2, E0RQ
h/2
= p(a’t - Fx)z dz
-h/2
aM - M
S = + 2{oyz(x,y,h/2,t) + oyz(x,y,-h/2,t)]-Qy
h/2
=S pla, - F )z dz
-z 7 ? (50
3 y/2 - 3 thlz
+
3; u-hlz Oxz Z Az W

h
-hlzoyz z dz) + Q{OZZ(X.Y.h/Z.t)

: h/2
+ ozz(x' y';hlz,t)]-Nz = f s p(az = Fz)z dz

We assume that the surface shear is zero:

Oz XY,

In/2,t) = oyz(x,y,fh/z,t) =0 (5D
Using eguations (37),

(38), (44), and (46), in eguations
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( (49) and (S0) we obtain:
e’ . . oL T o 2a 2, \
17 Bl ge Vo ng * 7 Mog” "V 0] ]

v 3 e =
T 0 T B o, Y Yo, tn T (o, e Y0, n) )
+ O(es) = pazea(:;o - Px‘) + O(es) .

3
e 1 2 3
1-vZ Bl Yo,nn * V0,10 ¥ TMo,n" TV¥, ") “ NES o

3

S
'2‘(1—*\.)5*[% En Vo,br * ("o,g"’o,n),gl + 0(e”)

= oa’e 3(vo - Py )+ 0e%)

' 2
wels U1,e T Tin t Yo,zr T Yo,nn) * 200

1 2 b 2y -
{ 2 E*Iu ‘Zwo'g *V(voa'ﬂ ¥ .zwoa'ﬂ )J

4
v _4 e
IT\’-Q Q} Wo gg + [-(T—)- E*(uo'n + Vo'§ + wO,ng,n

2 1

2
Yo, tn {1-\» Bl Vo,n * wom * vl T g )]

2.2°°

Iz— e q} - O(es) = pa“e’w ¢+ O(e4)

3 2 3
_T (u + vy ) 4 r—rp , * = E
12(1 ® 1,88 1,%n (I-v] 7,8 Z4(T+v] ™=

-v )

g 230 5
(ul,rm + vl,{,n) K2 G* (u1 + wo'g) + O(e”)

\

(52

°11‘-2 pa 2 (ul - Gx) + O(ee) .
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1
————337—-5 (v + vu ) + ETESE
12(1-\, ‘| » lann lrgn 'V) p:"l
+ e’ E. + ) -R e (v, + )
TATT om U1ng Y Vi,pr) TREG, IV Y Y g
5y _ 1 287 6 (53
+ O(e") Y7 p a’e (vl Gy) + O(e”) , >
e> E[(2 ), + (2 ) 1=0 )
TITTT Bl (2Wg¥o )y * (2wgwg ) p]

Equations /52) and (53) are the equations of motion.
We note that to obtain these equations we used three-
dimensional stress-strain relations., These equations can be

2p for g and p respectively,

reduced further if we take ezq and e
thus leading to a theory in which two-dimerisional plate stress-
strain relations are emploved. 1In this case, all terms in-
volving g and p drop out except the 2e2p term of the last of
equation (53). We also note that the inertia term in the
latter equation is of O(ez)° This point will be cleared

when we used perturbation in time t later. As the last of

S)’

equation (51) is of Ofe we ignore this equation in the

present theory.

7. Reduction of the Equations of Motion

The third equation of (52) may be written in the

following form:
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RozG' (ul { ) = -kezG ‘bw_ + pa w. - 2 - ozN,
» »* (54)
e’nN = N + 2N N w Ly
x%o,t xy¥o,tn * “y¥o,mn’ GEZ  on2

From the first and the second of equations (53) vy and uy

are eliminated with the use of equation (54). Hence:

1 1 .2, )
14 A - [ s ey = [
o%ls [mi uy Rg u; - 1y Pa (ul Gx) A’i wo,E,]
+ o E[( a/a?)w -KG'Aw -N.]
I~y P 0% T 0,E ¢k
+ (2ve’mG’'- E) ep ¢/12(1-v) = 0 .
= ® O b (55)
F l ' o l 2 S - P '
o:&i [mi bv)KG'v) = Ty pe (v, -Gy) 26", o1
R E[(p al/e)w _ - x€'bw_ _ -N
24 (1-v]) - P o,n x M ;ﬁ
+ (2\)02'(6'-3 ] opn/12(l-v) = 0 J
» N Y

where we used the following properties of the operators

E and G’:

% - A
EG' =GE, f[E#(g,nt)] =E3f,
%» %X N %N » »

?(56)

3y (B plen, )] = E 36

which can be proven easjily from the defining equations (32).

We can also, by part integration, prove that:
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(E#) , -E () =e (£)$(E,n,0)
* i » e

. . (57)
(E ¢) tt - E($ 44) = e(t)$(¥,n,0) + e(t)d(E,n,0)
= & !

These identities will be used in the following analysis.
Differentiating the first of equations (SS) with

respect to ¥ and the second with respect to n, adding the

results to each other and using equations (54), (56). and (57)

we obtain:

3 L N ) l-l\
2 2 2 h 2 4 2
- e“G’D A®w_ + pa“(D + Ke’G’)Aw_ - pa h Ke“G’'w
»n »n © » Tz %€* o » o
2,3 4... 3
- h“a“:*°* _ vh 2 o3-Sk v
Bir—w U D+ rorr=) K eGe')lp t2hTR G'p
n3a? 2 R s
*L-s—p-QZDAN*h n.c'tw{-rn
}(58)
*%‘;*f-gozs'(e + G )+x2f-‘;[ Aw
e XE 7 Tyam Yo ¥
M TR IR U8 R /
where: 3
D-——‘z'rﬁh
o 12(1-v =
(59)

[y, 8] = v(£)(g,m.0) + y(t)$(E, n,0)

Here the operator D takes the place of the bending rigidity
of the plate thoof; without internal dampirg. [v,...] is
known when the initial conditions are given. Equations (54),
(SS) and (58) are the equations of motion for rotatory and

trarsverse motion. In case of zero internal damping, [v,...)}EB0
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and star. indexed quantities G’, E and D must be replaced
* = =
by G’°, E and D, Hence, we can divide these equations through-

out by A e2G* leading to plate equations with no internal

damping. This is done only for eguation (58) leading to:

2.3 N

2
-DA%w_ + (2%72— 222—'P Aw - pa 4 w

e G
a0 o \ 3
- (p2nat/12keZ6) W ¢ 20—+ B g
K G' 12(1-v)
+ (2n3/e2)p + (ph3aZ/12¢e2G’) 2p - (D/KG’)ON (60)
3 5 2., 2, 3

+ 1N+ (pn%/12 w e%eIN + (pa?n®12) (6, ¢ + G, 1o

D = End/12(1-v?) y

Equation (60) takes the place of the classical nlate equation:

-D a%w_ - path W+ 2afnp e x¥ =0 (61)
which are four terms of equation (60). The terms containing

G’ represent the effect of shear deformation and the terms

which are differentiated with respect to time and which con-

tain (ph3/12) as a coefficient represent the effect of rotatory
inertia. The effeact of the large deformation is contained in

the expressions of N, since Nx' Ny' and ny, given by equation
(37), are multinlied by various derivatives of w in the expression
(54) <£ N leading to a non-linear equation. Body moment
comoonents are taken into account with terms Gx,§ and GY.ﬂ'
The tera [(vh3/l2(1-v)]Ap 1s not enccuntered in the classical

theory. This is due to the transverse stress component which
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is ignored in the cla: sical plate theory. The foregoing
term is the moment of the plane forces due to contraction in
the x and y direction in the »>resence of surface pressure

p. Hence: In order .o obtain classizal plate equation, we

must let G’ —dw, ph /12 —> o, while path = finite value

and p — ozp.

Axial disnlacements u and Vo satisfy the first and second
of equations (52) which may be transformed into simpler forms:

2

i o = 2(1*v)oa‘w -‘E (wo'nAwo'g T Vox Awo,n)
2 -
+ 2pa“(1l+v) [ px,n + py,§] (62)
E A8_ - az(l-vz)é- = -E [w_ (Ow + w_ _Aw +(Aw )2
S o P o TntT0, 80,8 " Yo,no,n °
s () (W o 2w _w )] - v(l+v)ag + pal(1-v?)
o,&n 0,8t 0o,mn
- = 6
[ Px'§ Py'n] (63)
where W, and 66 are the rotation and the dilatation defined
by:
Between Uy, Ve and 60, W dual relations exist which are
expressed by equations (64) and (65);
bu, = eo'g (P bv, = Go.n " wg g (65)

We note that when the right sides of eguations (62) and (63)
are taken as zero and E 1is replaced by E, we obtain the
plane rotational and d;Eational wave equations of the small
deflection theory. The right hand sides of these terms

represent the effects of finite deformation, body forces and
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the effect of plane contraction due to a load q.

In application, boundary and initial conditions are usually
given i terms of planar displacements u, and A hence it is
useful to express differential equations in terms of u, and Voo
This is done by first expressing the first two of equations (52)
in terms of U, wo,n and vo’-wo,g' and then eliminating W, with

the use of egquations (62). Hence:

XN u, ¢ v{l+v)p’ g 3 + (l+v)2pa2[e,m

= L*
o,m =B

(66)
* ' - 2 - R
BIAT v o+ v{l+v)A 9, (14v) pazte,wo'a] B

where:

3 £ = Eof -pal(1vd) E b

A’ £ = E*pf - 2pa2(1+v) }-

AF -lA'E"[(wO ,2 + VW, 2)
e S 2

=A‘E g * (1-v)(w

)L o.t%.n),m L7
1+ = o Dy o ik
F— E*ﬁi[wo'nAwo,§ wo,EAwo,n],n pa“(1l-v®)a Px

+ pa’(1v) B L -P, n* Pyl y

B® is obtained from K*'by interchanging x,¥{ and v,n, respectively.
Equations (66) are the equations of extensional vibrations

of visco-elastic plates including the effect of finite trans-

verse oscillations, It is interesting to note that the terns

containing transverse deflecticn w, are completely separated

from the axial displacements u, and A Thus no coupling

effect is int:-oduced. The coupling effect between u, and

v, is introduced only with the brackets, (e, mo,n] and

Les md'g] which are the results of initial conditions.

Moreover, this coupling effect is introduced with

,—

e
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the rotation W, These terms disappear for purely elastic
media where memcry function € = o,

Equations (66) are linear in ug and v,e Consequently,
once we obtain LA the right hand members A¥* and B¥ will
be known. Therefore, the extensional vibration problem will
be reduced to solving the iahomogeneous linear partial
differential equations (66).

For elastic plates with zero internal damving equations
(66) can be written as:

- L - eee o \
Azuo = (1+v) (3-v)E lpazAuo + 2(l+v)(1-v2)E 2p264 u

o

+ vi1w)E lag ., - 2v(1*V)2E-1pa23 : ~ A E°

23

s (1) o) XY (68)
A2v° - (1+4v) (3-v)E lpazAvo + 2(1+v) (1-v2)E 2p2a4 v :
+ v(1+v)E laq ) (1+v) 27 1pa%g S e )

where A and B are obtained from A¥® and B¥ by taking E for B*.
Equations (68) are the generalizations of the equations of
extensional vibrations of the classical theory. In the

classical theory terms containing A, B, and q are ignored.

8. Perturbation in Time

The above differentigl equations are extremely complicated
and do not lend thezmselves easily to integration. Simplification
can be made, however, if some additional assumptions are made.
For examnle, in the aoplication, plates have finite boundaries.
The stress or deformation wave in the nlane of the nlate has
a very large wave velocity. <Jonsequently, a few milliseconds
after the moticn begins, the stress wave will be felt every-

where on the piate. Thus, in croblems where the transient
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state in the planar wave propagation is unimportant, a great

deal of simplification can be effected by making perturbation
in time. Also assume that the body forces and moments are

of O(eh).

T = et (69)

Hence let:

The first two of equation (49) can then be reduced to:

=0, N N, _ =0 (70)

+
Ne,t ¥ Nxyon xy, b~ Ny.n

since all terms in equation (49) are of order e3 , while

inertia terms are of order ed , (See eguations (52)).

Equations (70) are gaticfied by the Airy stress function
F (E,n,t):
2

2 2

Ny =@ Fomm ¢ Nxy = "0 Fgqn o Ny = eFo i b7
u, and Vs contained in the expressions of Nx' Ny and ny
given by equations(37), can be eliminated, thus leading to
compatibility equations:

- <+ - - + =

(N VNY).ﬂﬂ (NY va)'gg 2(1 V)ny,gn 0 (72)
Substitution ¢f equation (71) into (72) gives:

2 2 _

A°F = vhA g + hE*(wo'an w0.§§w°.ﬂﬂ) (73)

The equation for the transverse vibration is obtained by
combining equations (58) and (71). The cnly change in equation
(58) will be in the expression of N, which takes the form:

hN = F 2 (74)

+
Fo,tn¥o.tn * Fo,tr"o,mm

Cf course, we also set Gx = Gy = O, and transform the terms

o,nn%o, ¥t ~

scntaining derivatives with respcct to time to derivatives with

respect to v, by using equation (69). Equation (58) with N

-garase o
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given by (74) and equation (73), are solved simultanecusly to
determine Po and W Once this is done we can then use the
first two of equations (37)or (66) to determine u, and v_ since N,.
Ny and ny will be known by equation (71). Deformaticn
comoonents u, and v, can now be solved from ecuvation {55)

We note tha*t equatiorn (73), without the term vhaqg,
and equation (58 with all terms and the internal damping taksn
as zero, excent the first and the ninth terms, gives the
large static deflection equation given by the F;bpl-Ké}méh-
Timoshenko theory (). Thus the oresent theory generalizes
this theory to dynamic problems. lMoreover, it extends the
theory to take into account the shear deformation rotatory
inertia, inertial external loading oa the surfaces and the
bourdaries of the plates for visco-elastic plates. Various
Spécial cases given below are suggestive in simplifying these

equations further for practical problems.

a, Zero internal damping

In this case equation (6C) becomes:

.5 2
2 n Dpa 2,3
Doy + (pTy ¢ ZTTI BV, o T PR, o

3 Py 2 3
-(pzhsa‘IIZHG')wo’rttr + 2(;§§267 + I?%%TV))AP +2ha’p

+(ph3a%/1286)2p __ - (D/RG*)AN + KN + (ph°/12KG°)N _ =C (75)
where N is given by equation (74).

b. Small deflection and (a)

If we use equation (75), and in all the equations which

follow take N as giver by the second of equations (54), where Nx'

(%) The theory was given first by F¥pol [11.

——————
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ny, and Ny are constants, we obtain small deflection theory.

c. Rotatory inertia omitted and (a)

This means dropping all terms containing ph3/12 in

equation (75), hence:

-Dbzwo + (DpazﬂVG')Awo.TT = pazhamo'rT
2 3
Da vh S 3y o
+2( Rt * TorI=y)) AP * Znap (D/KE)AN + h°N = O (76)

If we further put %? = 0 to obtain static plate deflection, we
obtain Reissner’s equation (70) given in [22], except for
the term vh3/12(1-v)° As explained before, this term does not

appear if one starts with the plate stress-strain relations.

d. Shear deformation omitted and (a)

By letting#G’ —® in equation (75), we obtain the plate
equation in which shear deformation is negligible:

2 2.3 vh3

-Da - pa’h Yo,tT M 2o =) bp

w, o+ (p115/12)13w°',r

+ 2ha’p + 1% = 0 (77)
Further, if we set ph3/12 = O we obtain the plate equations cf
F;ppl-Ké}m5h-Timoshenko theory except for the term containing
vh3/12(l-v) whose presence is explained above.

e, Small deflection with axial stresses omitted

By setting Ne0, eguation (76) reduces to the equation given
by Uflyand-Mindlin theory [3. 4] except for the term containing
vh3/12(1-v).
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9. Boundary and Initial Conditions

Let ny be the exterior unit normal to the edge surface I
and Ti be the stress vectors acting on %. Then the boundary
ccnaitions on the surface tractions consist of giving Ti on X
at all times:

i - oijni prescibed on & (78)
For the present theory, there is no distinction beiween contra-
variant stress vectors Ti and covariant stress vectors Ti'oijnj'
Let s be the tangent to the boundary curve, C, which is the
intersection of the deflected medium plane with £Z. Then n,

s, z make a right hand system. Let © be the angle petween n

and x ard g-- 6 the angle between n and y, Fig. 2 . We first

transform o]

components to the n, s, 2z system. Afterwards,
we obtain the plate boundary conditions on the membrane forces
by integrating Ti across tne thickness frcm -h/2 to +h/2.
Boundary conditions on the bending moments are obtained by
multiplying Tj' with 2z and integrating with ressect to z

across the thickness, Hence:

=1 Ly -
Ny = g(Ng *+ N) + (N, - N)) cos 28+ N __sin 26

1 ‘ . (79)
an "Y(Ny - Nx)81n 20 + ny cos 26
an - Qx cos © + Qy sin ©
_1 1,y . .
M, §4Mx + My) + 24Mx My)cos 26 - Mxy sin 26 (80)

Mgn = FM - ¥ Jsin 20 + ¥, cos 20

We note that like in Reissrer’s theory, [2] we have three
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boundary conditions (80) in case of z2cro membrane forces. In
the classical plate theory,of course, the condition on an is
absent. In the presence of membrane forces, altogether five
boundary conditions must be satisfied.

In case the surface tractions are unknown Lut some support
conditions are given, depending on the type of support, we
need to orescribe deformations Uge Voo Woo Uye ¥y and their
derivatives in various directions. These ccnditions dre easy
to express, from the meaning of the deformaticn components. Of
course, zero derivatives of these functions in any direction
along the boundary express the clamp conditicns.

In gereral, we iight have a mixed condition at the edge
involving some conditions on traction and some conditionrs on
deformations and their directional derivatives. Altogether,
five independent mixed conditions are needed at a ovart of boundary
on which the normal n is continuous and has first order derivatives.

Initial conditions are obtained by »rescribing the dependent

variables and their time derivatives of first order.

An exhaustive study of the boundary and initial conditions
can be obtained by using the variational »rinciple; which,
however , seems not worth the trouble.

Finally, we give the expressiuns of Mx, My,and Mxy‘

Hence Mn and Msn can be obtained in terms of LS by means of
equations (80), sc that the differentizl eguation for w_ can
be treated without refererce to the other defcrmation comnonents.

This can be done by combinirg the last two of eqguations (37) with

equations (38). Hence:
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